

Materials Crystallography

Structure and Property Relations in Energy Materials

Sunday 29th September 2013

Mogens Christensen Center for Materials Crystallography Department of Chemistry & iNANO Aarhus Universtet

Acknowledgements

Funding:

Danmarks Grundforskningsfond Danish National Research Foundation

Thank you for your kind attention!

Facilities: ESRF MAX-lab SPring8

Conclusion

JANO

Synchrotron light is a very versatile tools for materials research

Atomic positions and occupancies: Single crystal and powder diffraction - including resonant scattering

Vibration characteristics through Inelastic X-ray scattering

Growth properties of compounds In situ studies

Overview

Thermoelectrics – a short introduction

Single crystal X-ray and neutron diffraction
Resonant diffraction

- **Zn₄Sb₃** Single crystal diffraction Powder diffraction
- **Skutterudites** X-ray and Neutron powder diffraction
- **Photons vs phonons** Inelastic X-ray scattering in FeSb₂

In situ X-ray diffraction studies of crystal growth

Power supply

Thermoelectric figure of merit

JNANO

Power factor $S^2\sigma$ => Controlled by doping

The Electron Crystal

Electron thermal conductivity $\kappa_{\rm e}$ => Fixed by Doping.

Lattice thermal conductivity κ_{L} \Rightarrow The structure of the material

The Phonon Glass

The clathrate structure

JANO

• 6 tetrakaidecahedra

• 2 dodecahedra

Zintl stoichiometry:

- Host is tetrahedrally bonded: 4e⁻/atom
- Ionic guest donates valence electrons
- Zintl: 4*e*⁻/atom · 46 host atoms = **184***e*⁻

 $Ba_8Ga_{16+x}Ge_{30-x}$ Ba donates $2e^- = 8 \cdot 2 e^- = 16e^-$ Ga has 3 valence $e^- = 16 \cdot 3 e^- = 48e^-$ Ge has 4 valence $e^- = 30 \cdot 4 e^- = 120e^-$ Total # $e^- = 184e^ x > 0 \qquad x < 0$

Surplus of Ga ↓ p-type carriers x < 0 Surplus of Ge ↓ *n-type* carriers

UNANO

The clathrate structure

Ba ₈ Ga _{16+x} Ge _{30-x}				
Ba donates 2 <i>e</i> -	= 8·2 <i>e</i> ⁻	= 16 <i>e</i> -		
Ga has <mark>3 valence</mark> e ⁻	=16·3 <i>e</i> -	= 48 <i>e</i> -		
Ge has 4 valence <i>e</i> -	=30·4 <i>e</i> ⁻	=120 <i>e</i> -		
Total # e ⁻		=184 <i>e</i> -		

Where are the host structure atoms?

What about the guest atoms?

Cages in the unit cell: • 6 tetrakaidecahedra • 2 dodecahedra

Look into the literature

Random distribution of Ga/Ge

Guest atom position in the cage has been disputed

Ba₈Ga₁₆Ge₃₀ Sr₈Ga₁₆Ge₃₀ 24k/24j Eu₈Ga₁₆Ge₃₀

6d 24k

We decided to carry out a single crystal diffraction experiment.

Chakoumakos, et al. J. Alloys & Comp. 296 (2000) 80 Chakoumakos, et al. J. Alloys & Comp. 322 (2001) 127

Host structure occupancies

Convention x-ray diffraction: not possible to distinguish Ga/Ge Problem the scattering power is proportional to the number of electrons

Resonance data was collected at the Swiss-Norwegian Beamlines, ESRF.

M. Christensen et al., Accepted J. Am. Chem. Soc., (2006)

Single crystal diffraction

Flourecence measurement of absorption edge

Host structure occupations

UNANO

Relation between the host occupancies and guest atom nuclear density!

M. Christensen et al., Chem. Mater. 19 (2007) 4896

Thermoelectric properties

NANO

M. Christensen et al., Chem. Mater. 19 (2007) 4896

Anharmonic modeling

Isolated atom anharmonic potential:

	# Parameters	
Isotropic	1	Scalar
Anisotropic	6	2nd rank tensor
Cubic anharmonic	10	3rd rank tensor
Quadratic anharmonic	15	4th rank tensor

The number of free parameters

=> high order data is needed for carrying out anharmonic refinements.

The symmetry of a specific atom may reduce the number of free varaiables.

Sr on 6 <i>d</i> (0.25 0.5 0.0)	Number of free variables:		
	Anisotropic:	2	
	3rd Anharmonic	1	
	4th Anharmonic	4	
	Total ADPs	7	

High resolution data				
Technique	Advantage	Disadvantage		
Monochromatic	High precision	Slow, large crystals		
Time-of-flight Laue	Fast, small crystals	Less precise		
White beam Laue	Fast, small crystals	Less precise, less coverage		
Laue diffraction experiment at KOALA at ANSTO				

Maximum entropy method

UNANO

Maximum entropy method

$$S = \sum_{N} \rho_{N} \log \frac{\rho_{N}}{\tau_{N}}$$

 ρ_N is the nuclear density in pixel *N*, τ_N is the density of the prior distribution

The density maximization

=> largest entropy

=> flattest and most featureless density, which fits the data.

Conclusion – clathrates

- JNANO
- Ba₈Ga₁₆Ge₃₀ difference in thermal conductivity => could not be explained by Ba guest atom position
- Ba₈Al₁₆Ge₃₀ remarkable difference in host and guest strucutre => explain thermoelectric properties

Anharmonic vibration and MEM was used to describe disorder

Acknowledgements:

Dan Bryan (UCSB) Bo B. Iversen (Aarhus) Martha Miller (IPNS) Phil Pattison (SNBL) Jacob Overgaard (Aarhus) Art Schultz (IPNS) Mette Schmøkel (Aarhus) Hans-Peter Weber (SNBL)

Overview

Thermoelectrics – a short introduction

Clathrates – the structure

Single crystal X-ray and neutron diffraction Resonant diffraction

- **Zn₄Sb₃** Single crystal diffraction Powder diffraction
- Skutterudites X-ray and Neutron powder diffraction
- **Photons vs phonons** Inelastic X-ray scattering in FeSb₂

In situ X-ray diffraction studies of crystal growth

Why is the thermal conductivity of Zn₄Sb₃ so low?

Powder diffraction of Zn₄Sb₃

JANO

Information from powder diffraction data

Lattice parameters Atomic arrangements Displacement factors Crystallite size Strain Texture Relative phase fraction Peak positions Peak intensity Peak intensity (high 20) Peak width Peak width Relative peak intensity Scale factor

UNIVERSITET CMC

Conclusion

The low thermal conductivity could be explained by Interstial atoms in the structure MEM help confirming the atomic positions

The new structure agrees with Electron counting Density in correspondance with measurements

Acknowledgements:

Bo B. Iversen (Aarhus) Eiji Nishibori (SPring8) Jeff Snyder (JPL)

Overview

Thermoelectrics – a short introduction

Clathrates – the structure

Single crystal X-ray and neutron diffraction Resonant diffraction

- Zn₄Sb₃Single crystal diffractionPowder diffraction
- **Skutterudites** X-ray and Neutron powder diffraction
- **Photons vs phonons** Inelastic X-ray scattering in FeSb₂

In situ X-ray diffraction studies of crystal growth

Skutterudites

Skutterudites have promising thermoelectric properties: Brutto formula: **GCo₄Sb₁₂**

Possible ways of optimization: Filling – Guest atoms in the voids. Nano structuring. Substitution of **Co** by **Fe** or **Ni**.

X-Rays source problems: Weak contrast between **Fe**, **Ni**, and **Co**. Problem with conventional **Cu** Kα sources: High Fluorescence due to **Co** and **Fe**.

NANO

UNANC

X-rays vs. Neutrons

Neutrons; isotope specific

scattering length

General problems:

- High background =>
 - Broad peaks =>
- Comparable scattering power =>
- hides small impurities.
- difficult to resolve closely spaced peaks.
- hard to distinguish atoms.

Skutterudite Ni_{1.2}Co_{2.8}Sb₁₂

JANO

Skutterudite Ni_{4x}Co_{4(1-x)}Sb₁₂

JANO

A combined refinement was carried out

Case I; Ni_{4x}Co_{4(1-x)}Sb₁₂

Phase analysis of combined refinement

Co _{3.76} Ni _{0.24} Sb ₁₂	72.7%
Co _{0.92} Ni _{3.08} Sb ₁₂	16.4%
NiSb ₂	5.8%
Sb	4.84%
CoSb	0.29%

Total amount of Co and Ni relative to Sb of 12

Powder phase anal	ysis	Atomic absorption
Ni	1.2(1)	1.2
Со	2.9(1)	3.0
Sb	12.0(1)	12.0

Theoretical calculation of phase stability supports the interpretation of the data.

Conclusion

Take care when analyzing powder diffraction data Data does not always reveal what they are

Very good correspondence between atomic absorption and careful phase identification.

Acknowledgement:

Luca Bertini (ISTM) Carlo Gatti (ISTM) Bo B. Iversen (Aarhus) Mamoun Muhammed (KTH) Eiji Nishibori (SPring8) Häkon Rundlöf (Studsvik) Mamoun Toprak (KTH)

Overview

Thermoelectrics – a short introduction

Clathrates – the structure

Single crystal X-ray and	neutron	diffraction
Resonant diffraction		

- Zn4Sb3Single crystal diffractionPowder diffraction
- **Skutterudites** X-ray and Neutron powder diffraction

Photons vs phonons Inelastic X-ray scattering in FeSb₂

In situ X-ray diffraction studies of crystal growth

UNANC

Photons vs Phonons

Photon

"Massless" energy Energy package in air/vacuum Photons have direction Photons have energy Photons have polarization

Phonon

Mass displacement Energy package in solids Phonons have direction **k** Phonons have energy E Phonons have polarization **e**

NANC

Scattering - a reminder

Elastic scattering

 $E_{\rm in} = E_{\rm out}$ $\mathbf{k}_{\rm in} = \mathbf{k}_{\rm out} + \mathbf{G}$ G integer Miller indices

Tells us where atoms are

Inelastic scattering

 $E_{in} = E_{out} E \pm \hbar \omega$ $\mathbf{k}_{in} = \mathbf{k}_{out} + \mathbf{G} \quad \mathbf{G} \text{ fractional Miller indices}$

Tells us additionally what atoms do Phonons/atomic vibrations Molecular dynamics Diffusion processes

Unfortunately the inelastic signal is very weak Approximately 10⁶ times weaker than the elastic signal

Comparison: X-rays, Raman and neutrons

Phonons have typical energies of: E = 0-100 meVPhonon wave vectors **G** > 0.5 Å⁻¹

X-ray: $\lambda \sim 1.3 \text{ Å}$ $Q_{max} \sim 10 \text{ Å}^{-1}$ $E_{in} \sim 10 \text{ keV}$ $\Delta E/E_{in} \sim 10^{-7}$ <u>Sample size:</u> $<1\text{mm}^3$

Raman (light):

 $λ \sim 500 \text{ nm}$ $Q_{max} \sim 3.10^{-3} \text{ Å}^{-1}$ $E_{in} \sim 2.5 \text{ eV}$ $\Delta E/E_{in} \sim 4.10^{-4}$

<<1mm²

Neutron:

 $\lambda \sim 2.8 \text{ Å}$ $Q_{max} = 4.4 \text{ Å}^{-1}$ $E_{in} \sim 10 \text{ meV}$ $\Delta E/E_{in} \sim 10^{-1}$

>>1cm³

UNANO

Schematic instrument setup

- Extremely well monochromatized incoming beam
- Very good angular resolution for energy detection

Pictures from the experimental hutch:

The ID28 beamline @ ESRF

Detection and energy scans

NANO

20 21

The incoming energy is kept fixed and change in outgoing energy is changed

The detected energy is changed by

How to change energy? precision.

9 different Q-values are measured simultaneous.

Si(13,13,13) 12000 individual crystals glued onto a spherical Si substrate

Study of FeSb₂ **INANC** Colossal Seebeck reported: -45000 μ V/K @ 10K S//a (0 T.9T) –S//b (0 T;9T) – S//c (0 T;9T) Calculations have so far not been able S//c (0 T) -10000 to reproduce the peak Seebeck value 100 S (JAVK 0 -20000 -100 S (µVK¹ 200 100 T(K) 30 2.0 4 B(T) 6 2 8 1.5 -40000 1.0 MT 0.5 -50000 <u>|</u>0 0.0 10 20 30 40 50 60 T(K) Experiments done in reflection mode

Crystal was cut to prepare a (100) surface next to (110)

DFT calculations of phonon dispersion

Size of indicates the strength of e-p-coupling at that point. First we focused on the X point

Results

Signs of E-P-coupling when temperature is increased

- Broadening of phonon mode
- Decrease of phonon energy

Mode 4 shows significantly stronger e-p-coupling than modes 2+3

Apparent broadening of mode 1 is most likely an artifact of scattering from ice

Conclusions on FeSb₂ study

Theoretical calculations are confirmed at high symmetry position.

Off-high symmetry positions - some discrepancies that need to be explained.

Still no apparent explanation for the colossal low temperature Seebeck.

Acknowledgement:

Sebastian Christensen (Aarhus) Raphael Hermann (Jülich) Michael Krisch (ESRF) Anna Möchel (Juüich) Ilya Sergueev (ESRF) Martin Søndergaard

Overview

Thermoelectrics – a short introduction

	Clat	hrates -	- the	structure	
--	------	----------	-------	-----------	--

Single crystal X-ray and neutron diffraction
Resonant diffraction

- **Zn₄Sb₃** Single crystal diffraction Powder diffraction
- **Skutterudites** X-ray and Neutron powder diffraction
- **Photons vs phonons** Inelastic X-ray scattering in FeSb₂

In situ X-ray diffraction studies of crystal growth

What happens in the synthesis?

UNANO

In situ X-ray diffraction

In situ X-ray characterization of synthesis products allow observation of => Crystal growth

Avrami kinetics - Fits

Plot:

Reation rate as a function of time.

Reaction rate defined as $V(t) / V_{inf^{p}}$ with V_{inf} being the final crystallite volume.

<u>Fit:</u> Johnson-Mehl-Avrami equation:

 $f = V(t) / V_{inf} = 1 - exp[-(k(t-t_0))^n]$

n Identifies the limiting mechanism for growth and estimate the activation energy from k.

Activation energy

Activation energy: Calculated from the Arrhenius equation:

 $k = k_0 exp(-E_a/(RT))$

 $ln(k) = -(E_a/RT) + ln(k_0)$

 $E_a = -R^* \Delta y / \Delta x = \frac{67.4 \text{ kJ/mol}}{1000}$

Previously reported: 0.71 eV = 68.5 kJ/mol

Transmission Electron Microscopy (TEM)

UNANO

Fit with LogNormal distributon:

$$g(D) = \frac{1}{D\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2}\left(\frac{\ln D - \mu}{\sigma}\right)^2\right]$$

$$D_{Number avg} = \exp\left(\mu + \frac{1}{2}\sigma^2\right)$$

Mean size = **<u>14.93nm</u>**

UNANO

PXRD(Rietveld):

Size comparison

$$D_{av} = \frac{0.94\lambda}{FWHMcos(\theta)}$$

(Scherrer - volume weighted)

PXRD(WPPM):

$$D_{av} = \frac{3}{4} \exp\left[\mu + \frac{7}{2}\sigma^2\right]$$

(LogNormal - volume weighted)

<u>TEM:</u>

$$D_{av} = exp\left(\mu + \frac{1}{2}\sigma^2\right)$$

(LogNormal - number weighted)

UNANO

Rietveld vs. WPPM sizes: 20 -0.16 -o- T=320°C + 25min -o- T=370°C + 2 min 18 -Dav = 14.76 nm 0.14 0-0-0-0-0-0-0-0-0-0-0-0 Dav = 14.86 nm 16 0.12 -14 0.10 Size (nm) Freq. (a.u.) 12 0.08 10 -0.06 8 0.04 - Rietveld T=295°C 0.02 WPPM T=295°C 4 Rietveld T=320°C - Rietveld T=370°C 0.00 2-) WPPM T=320°C WPPM T=370°C -0.02 25 ò 5 10 ò 15 20 30 10 20 30 40 Time (mins) Size (nm)

* Same average size but different distributions!

Size comparison

-> High temperature + short reaction time gives narrower size distribution!

UNAN

Conclusion

- Particles size can be controlled by reaction temperature or by substituting a surfactant free iron(III) source.
- Different mechanisms limit the growth depending on the reaction temperature.
- The size distributions broaden as reaction temperature or reaction time is increased.

Acknowledgements:

Henrik Andersen (Aarhus) Espen Bøjesen (Aarhus) Bo B. Iversen (Aarhus) Kirsten Jensen (Aarhus) Nina Lock (Aarhus) Christoffer Tyrsted (Aarhus)

Conclusion

JANO

Synchrotron light is a very versatile tools for materials research

Atomic positions and occupancies: Single crystal and powder diffraction - including resonant scattering

Vibration characteristics through Inelastic X-ray scattering

Growth properties of compounds In situ studies

