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Towards survival

Even any member in an experiment-related division or
BL scientists, who are not the accelerator specialists,
should understand the relation between the SR
properties and electron beam performances,

to keep the present experimental condition,
to Improve the condition as much as possible,
and

to challenge new experiments by using

the advanced SR.
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2. Light source properties vs electron
beam performance(1)

Main devices to supply SR to users are
“undulators”, which are installed in magnet-free
straight sections in 3rd-generation SR sources.
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2. Light source properties vs electron

beam performance(2)

In an undulator, radiation from a single electron
at each undulation interferes with each other.
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Spectral narrowing
by resonant condition
for a single electron is

= U (14K2/2+4262)
2y
where K and y are a
deflecting parameter
and relative energy.
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2. Light source properties vs electron
beam performance(3)

Q: Why does the radiation concentrate within the ycone ?

A: The electron can run after the emitted light with the
almost light speed only in this limited angle.
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2. Light source properties vs electron

beam performance(4)

Q: Why does the radiation concentrate within the y cone ?

A: The electron runs after the emitted light with the
almost light speed only in this limited angle.
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2. Light source properties vs electron
beam performance(5)

If electron beam were point-like without spatial
divergence and , all electrons could have no
angular divergence, radiations were coherent !

Real radiation properties are obtained by convoluting
radiations from all N electrons

In the real world N
electrons are
distributed in a

—>@ > phase space, never
degenerate on the
same point.

® Eixctron
—» Moving direction —>» Photon emission

direction
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2. Light source properties vs electron
beam performance(6)

In order to obtain the same resonance condition
over most of circulating electrons distributed,
sufficiently small beam emittance is required.

xp (b) K=l Interference
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2. Light source properties vs electron
beam performance(7)

In order to obtain the same resonance condition
over most of circulating electrons distributed,

sufficiently small beam energy spread is required.
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Spectral broadening by the
energy spread is much less than o

Intrinsic broadening ~1/N,,.
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2. Light source properties vs electron
beam performance(8)

Ny >y2 -Foa(K, 8)

GOy 0O, (~Ex. Sy)

B: Brilliance (phs/sec/mm2/mrad2/100mA)
l,: Beam current (mA)
N,: Undulator period number
o,. Horizontal and vertical beam sizes (m)
c,,0,: Horizontal and vertical angular divergence (rad)
0. Beam energy spread
K :Deflection parameter
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2. Light source properties vs electron
beam performance(9)

_ Photon
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&x,€y: Horizontal and vertical emittance (merad)

By : Horizontal and vertical betatoron functions at 1D
nyy - Horizontal and vertical dispersion functions at ID
c,. Spatial and angular divergence of photon beam
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3. Stochasticity of photoemission(1)

The photo-emission process is not continuous, in other
words, quantized process. So, the emission position, the

number of the emission photons, and the emission photon
energy have fluctuations.

This stochasticity (random fluctuation) causes finite
spread of the circulating electron beam in the 6D
phase space. The density distribution is generally
Gaussian due to the central limit theorem.
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3. Stochasticity of photoemission(2)

A relativistic electron accelerated in a magnetic field will
radiate electromagnetic energy at a rate which is
proportional to the square of the accelerating force.

<Averaged radiation power> classical electron radius

r.c e E
P:2 E_

3~ (Mo F.® = 3 (MyC?)3 p
<Averaged radiation energy per turn>
U=[Pdt = [P ==

Averaged properties
are smooth !

4
U(keV)= 88.5I§m(§3eV) for the case with the constant p.
P
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3. Stochasticity of photoemission(3)

In the quantized radiation process, the integrated parameter,
energy loss per unit time also fluctuates. Magnitude of the
fluctuation can be defined by a mean square.

<Mean square of energy loss fluctuation per unit time>

_ _ u:3’ﬁcy3_
24[3 T T2 p

u.. critical photon energy ~ 3.2<u>

<Averaged photo-emission rate>
<N>(phs/s) ~ 3.2P/ u,
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3. Stochasticity of photoemission(4)

Brilliance

p=~40m

1 [}lz 1 11 T | 11 W T | | I T | T | 11 1
0 20 40 60 30 100

EnergylkeV|]

U . represents the photon energy at the peak brilliance of
the BM radiation.
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3. Stochasticity of photoemission(5)

Let’'s estimate the parameters!

<Case-1 E=1 GeV, p=5m>

_ 885X14 _ _ U — 8
U(keV)= = =17.7, P(keV/s)-TzanS/C 1.7x10

3 6.85x1019%2.998x108%x19573

<Nu2> (keV?/s) = 24?% 1.7x108 x 0.44=0.99x108

<N>(photons/s) ~ 3.2x1.7x108/0.44 =
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3. Stochasticity of photoemission(6)

SPring-8 parameter is the next example.

<Case-2 E=8 GeV, p=40m>

88.5x84 U
— 3 P(keV/s)= = 1.1x1010
40 9.1x10%, P( ) T=21x40/C

_ 3 6.85x1019x2.998x108x15656°
u. (keV)= 5 40

<Nu2> (keV?/s) = 24?% 1.1x101° x 29.6=4.31x10™

<N>(photons/s) ~ 3 2.c1.1:1010/ 29.6
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4. Distribution of circulating electron
beam(1)

6D-phase space volume of a single electron, 836 comprises
of canonical variables (x, px(x), y, py(Y’), t, pS(AE/E)).
In an ideal case, 6D-phase space volume can be written by

the product of areas of the three orthogonal 2D spaces 852'

- : Z=X,V,S
= lransverse motion y

- .--L.ongitudinal motion

! /‘/L . |56 CsxCsyss
.:ﬂlan h ;ry US:
vlef | | These are invariants of

P \f,/’ / the motion for a
Horizontal- - Veftical Langitddinal  conservative system.
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4. Distribution of circulating electron
beam(2)

You can understand the relation between the 2D
phase space and the emittance by using a simple
harmonic oscillator.

X = A+cos(ot+d,) 1y
6}

%:X’: Ao Sin(O)t +(|)O) K
1 dX - "
> Sde = -A-sin(ot+¢g)

Action=A, Angle=¢= ot +¢, , Ky X
g

Invariant= x 2+(x'/®)2=A2= circle area _ ¢, ot
T X
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4. Distribution of circulating electron
beam(3)

We need potential wells to stabilize three
orthogonal oscillation modes to keep electron
beam In a storage ring.

Quadrupole magnets generate the
adequate potential wells for two 400 e e
transversal oscillation modes, which 5 soop, "™
are called betatron oscillations in the 2005& f
horizontal and vertical planes. f00f P
RF acceleration electric field ' '
generates the adequate potential well ¢ . 1
for longitudinal oscillation mode, T e
which is called a synchrotron

oscillation.
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4. Distribution of circulating electron
beam(4)

SR light properties reflects the 3x2D phase
space distribution of circulating electrons.

We use the following three ensemble-averaged
emittances to express beam distribution in three
orthogonal phase spaces.

<gs6> =< Ecx >< g
:SX Sy S
g, - horizontal emittance (m rad)

g, . vertical emittance (m rad)

g - longitudinal emittance (m rad)
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4. Distribution of circulating electron
beam(5)

Width of the Gaussian distribution of N
circulating electrons is determined by the

dynamical equilibrium between the
radiation excitation and damping.

!
o [
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4. Distribution of circulating electron
beam(6)

Remember the invariant of a harmonic oscillator.

d<A=> _ dg, ,_

dt - dt ¥

Equilibrium condition:
d< A2> _lim<(A+AA)2 - A>  |im
dt — At—0 At - At—0

Damping term
Averaged energy dissipation

Quantum effect
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4. Distribution of circulating electron
beam(7)

Energy spread o,

im . <AAA> :_2<A2> LT = ExT |

At—0 2 A't Tg

lim <AA2> 55
w0 At = <NUP>= 243 LTJUI"'

Since O g Is not the emittance, phase average factor

should be considered, O A2 = = ’3‘2>

/55 /55
OAET/ 96[3 Exu; » Opp/E= 96/3 E
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4. Distribution of circulating electron

Bunch length &_

G . has two components;

G 1= time spread by energy spread

G »=time spread by stochastic photoemission

Grl >>Gr2

AE/E

2013/09

beam(8)

1 I™ z

\‘;{

reference electron z=z,
dikation factor

AE/E

angular frequency/
of energy oscillatio

= ~10 psec %D ¢

@ SPring-8 Phase space of synchrotron
(energy) oscillation

T:t'to
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4. Distribution of circulating electron
beam(9)

Horizontal emittance €y

Excitation: due to the discrete energy jump + energy
dispersion

Damping: due to the decrease of transverse momentum
by the photoemission + acceleration along the running

direction

Excitation Damping

4D
Photon _..::Q

]'}-1'}]'} B px> B py
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4. Distribution of circulating electron
beam(10)

For the typical magnetic lattice structure (Chasman
Green: CG) based storage ring, the horizontal
minimum emittance is written by

1
- = . achromat
@general 2 8x min @

2
= qu 0 3
b
815 Jy
C,: Quantumn constant 3.832x103 (m)

0,: Deflection angle of a single bending magnet (rad)
JXx: Horizontal damping partition number ~ 1

8x min
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4. Distribution of circulating electron
beam(11)

Chasman-Green (CG) lattice is the most popular
magnet cell structure for a low emittance SR souce,
where a achromatic arc is composed of a pair of
bending magnets.

60 _

4]

4]
o
R
w

2 bends: CG or CBA

I~
L]

II|IIII
%]

E g
% 3bends: TBA
57 13 4 bends: QBA
§ 20 : - 1 §*
§ 10 - Jos2 3
I 1L & min<0p>  0,smaller
3 0+ -0 = .

: - with same

10 C -0.5
cell No.

Path Length s [m]
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4. Distribution of circulating electron
beam(12)

Vertical emittance €y

Ey has two components;
Sylz vertical emittance by stochastic photoemission

8y2: vertical emittance by HV coupling

Usually, Ey1 << &y 1-GeV storage ring

v=1000/0.511~2000
1/y~5 % 104

The Angular divergence Principally, &, =1/1000 &,
In the vertical plane is ~ 1/y IS possible
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4. Distribution of circulating electron
beam(13)

Vertical emittance is determined by magnetic error
components mixing the horizontal and vertical betatron
oscillation. The main sources are vertical misalignments

of sextupole magnets and rotational errors of quadrupole
magnets.

The effect of these error fields can be corrected to
0.1 % level by the combination of beam response
analysis and skew quadrupole corrector magnets.

One-dimensional diffraction limited X-ray beam is
now available
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5. Approach to coherent X-rays (1)
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Total Coherent Flux (%)

5. Approach to coherent X-rays (2)

104% 3.4 nmrd
i O

10'3%

10-5? /

/‘% Gen.

E/ 2nd Gen.

100 10 1 0.1 0.01

Emittance (nmrad)
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5. Approach to coherent X-rays (3)

72<H/p3> 7’6

Equation of natural emittance: e =C oC
q SRR (17 B
Conventional reduction scheme: y . Lorentz factor
1. Reduction of bending angle (6) @ : Bending angle
by increasing the number of p: Bending radius
bending magnets H: H-function
Additional reduction schemes: J : Damping partition
number

2. Reduction of stored energy (» with thexhelp of advanced
undulator design

3. Optimization of dipole field (p) in a dipole and / or inside
unit cell)

4. Damping enhancement (<H/p*>/<1/p?>) by additional
radiation

5. Damping partition number (J,) control
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