XFEL

- Photon Beamline and Experiments -

Kensuke Tono XFEL Utilization Division, JASRI

Contents

- 1. Photon beam properties
- 2. Hard X-ray Beamline
- 3. Experimental stations
- 4. Experiments at SACLA

XFEL: Properties and sciences

- Short pulse (<10 fs)
- High peak power (>30 GW)
- Coherent

Ultrafast observation beyond the speed of atomic motion

- Beyond static image
 - Imaging functions (motion pictures of chemical reaction, phase transition, etc.)
- Beyond statistical image
 - Imaging fluctuations, rare events
- Ultrahigh peak-intensity X-ray sciences
- New regime of X-ray-matter interactions (Nonlinear optics, quantum optics, etc.)

Femtosecond snapshot of sample

Single pulse FEL

Chapman et al., Nature Physics 2, 839 (2006)

SASE XFEL

- Short pulse (<10 fs)
- High peak power (>30 GW)
- Coherent (spatial only)
- Multimode
- Shot-by-shot fluctuation

Spectrum of single XFEL pulse

Y. Inubushi et al., Phys. Rev. Lett. 109, 144801 (2012).

Spectra at different pulse widths

Shot-by-shot fluctuation

Intensity/position

Spectrum

Shot-by-shot measurement is mandatory in photon diagnostics and experiments.

Contents

- 1. Photon beam properties
- 2. Hard X-ray Beamline
- 3. Experimental stations
- 4. Experiments at SACLA

Photon beamlines of SACLA

Beamline optics

Transport XFEL & filter out unnecessary lights

- Double plane mirrors (2 sets): Low-pass filter
- Double crystal monochromator (DCM, Si 111): Band-pass filter

Demands on optical elements

XFEL features	Demands on beamline optics
Short pulse (10 fs)	Damage free
High peak power (30 GW)	
Coherent	Speckle free

Speckles

Damage-free optics

Small atomic-number elements (Be, B, C, N, O) with small X-ray absorption coefficient

Be windows, diamond fluorescent screens, carboncoated mirrors, etc.

Koyama et al., Optics Express Vol.21 (2013)

Spackle-free optics (1)

Goto et al., Proc. of SPIE Vol.6705 (2007)

Coherent-X-ray transmission images of Be x-ray windows

With a <u>rough surface</u> and/or <u>internal voids</u>

Speckles

With a <u>smooth surface</u> and <u>uniform density</u>

Speckle-free

Spackle-free optics (2)

Ultraprecise x-ray mirror Mirror surface is finished by EEM (Elastic Emission Machining)

Mimura et al., Rev. Sci. Instrum. 79, 083104 2008

Photon diagnostics on beamline

Nondestructive, shot-by-shot monitoring is mandatory.

Photon diagnostics system on BL3

Wavelength monitor(wavelength /photon energy)

Beam monitor (intensity/position)

Alkire et al., J. Syn. Rad. 7, 61 (2000). 18

Shot-by-shot measurement of pulse energy

Contents

- 1. Photon beam properties
- 2. Hard X-ray Beamline
- 3. Experimental stations
- 4. Experiments at SACLA

Experimental stations

Single-shot measurement is mandatory

Even a single pulse destroys a sample.

Neutze et al., Nature 406, 752 (2000)

Instrumentation for single-shot

measurement

- High photon flux
 - Focusing
- Sample exchange
 - > Injectors
 - Fixed targets with a fast scanning system
- Sensitive X-ray detection
 - High performance detectors
 - ✓ High sensitivity, high frame rate, high dynamic range, large area, ...
- Fast & reliable data acquisition system
 - High performance computers
 - High speed network
 - Storage system
 - Software

Focusing

KB mirrors at EH3

Yumoto et al., Nat. Photon. Vol.7 (2013)

Injectors

Song (RIKEN) et al. Mafune (U Tokyo)

Continuous beam

Droplets

Detector

- Multi-port CCD (MPCCD)
 - High sensitivity
 - Low noise
 - (single-photon detection capability
 - Fast (60 fps)
 - − Large area(□100 mm)

Octal Sensor Detector (100 x 100 mm) 2048 x 2048 pixels

Kameshima (JASRI) Hatsui (RIKEN) et al.

Specification	
Frame rate	≥60 fps
Pixel size	50 µm
Noise	300e ⁻
Q.E.	~70 % @ 6 keV
	~20 % @ 12 keV
Dynamic range	14 bits
System noise	< 0.2 ph.@ 6 keV
Full well	~ 3000 ph. @6keV
	~ 1500 ph. @12keV

Data acquisition (DAQ) Joti, Kameshima (JASRI) Hatsui (RIKEN) et al.

Contents

- 1. Photon beam properties
- 2. Hard X-ray Beamline
- 3. Experimental stations
- 4. Experiments at SACLA

Typical experiment at SACLA (1): Coherent diffraction imaging (CDI)

Seibert et al., Nature 470, 78 (2011)

CDI experiment at SACLA

Typical experiment at SACLA (2): Serial femtosecond crystallography (SFX)

Chapman et al., *Nature* <u>470</u>, 73 (2011) ³²

High fluence application: Multiphoton ionization of Xe

PRL 110, 173005 (2013)

PHYSICAL REVIEW LETTERS

week ending 26 APRIL 2013

Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses

H. Fukuzawa,^{1,2} S.-K. Son,³ K. Motomura,¹ S. Mondal,¹ K. Nagaya,^{2,4} S. Wada,^{2,5} X.-J. Liu,⁶ R. Feifel,⁷
T. Tachibana,¹ Y. Ito,¹ M. Kimura,¹ T. Sakai,⁴ K. Matsunami,⁴ H. Hayashita,⁵ J. Kajikawa,⁵ P. Johnsson,⁸
M. Siano,⁹ E. Kukk,¹⁰ B. Rudek,^{11,12} B. Erk,^{11,12} L. Foucar,^{11,13} E. Robert,⁶ C. Miron,⁶ K. Tono,¹⁴
Y. Inubushi,² T. Hatsui,² M. Yabashi,² M. Yao,⁴ R. Santra,^{3,15,*} and K. Ueda^{1,2,†}

Non linear X-ray optics Emission from double core hole state

K. Tamasaku et al, PRL Vol.111 (2013)

- 100 uJ/10 fs = 10 GW (after 1-μm KB)
- Focusing size: ~1x1 μm²
- $10 \text{ GW}/(1 \mu \text{m})^{2} \sim 10^{18} \text{ W/cm}^{2}$

Double core hole of Kr

And more

- Pump-probe experiments
 - X-ray diffraction/scattering
 - X-ray absorption/emission spectroscopy
 - Photoelectron spectroscopy
- X-ray nonlinear optics
- X-ray photon correlation spectroscopy

Summary

- Novel properties and sciences of XFEL
 - Ultra-brilliant, ultra-short, and coherent
 - Beyond static, statistical, perturbative pictures
- Beamline for XFEL
 - Damage-free & speckle-free optics
 - Single-shot, nondestructive diagnostics
- Experimental instrumentation for single-shot measurement
 - focusing optics, sample injectors, detectors, femtosecond laser
- Experiments at SACLA
 - Femtosecond snapshots of samples
 - X-ray-matter interaction under ultra-high photon flux
 - Pump-probe measurement